Four persons can hit a target correctly with probabilities $\frac{1}{2},\frac{1}{3},\frac{1}{4}$ and $\frac {1}{8}$ respectively. If all hit at the target independently, then the probability that the target would be hit, is

  • [JEE MAIN 2019]
  • A

    $\frac{{25}}{{32}}$

  • B

    $\frac{{25}}{{192}}$

  • C

    $\frac{{7}}{{32}}$

  • D

    $\frac{{1}}{{192}}$

Similar Questions

Let $S=\{1,2,3, \ldots, 2022\}$. Then the probability, that a randomly chosen number $n$ from the set $S$ such that $\operatorname{HCF}( n , 2022)=1$, is.

  • [JEE MAIN 2022]

Let $A$ and $B$ are two events and $P(A') = 0.3$, $P(B) = 0.4,\,P(A \cap B') = 0.5$, then $P(A \cup B')$ is

If the probability of a horse $A$ winning a race is $1/4$ and the probability of a horse $B$ winning the same race is $1/5$, then the probability that either of them will win the race is

Let $A$ and $B$ be independent events with $P(A)=0.3$ and $P(B)=0.4$. Find $P(A \cup B)$

$A$ and $B$ are events such that $P(A)=0.42$,  $P(B)=0.48$ and $P(A$ and $B)=0.16 .$ Determine $P ($ not $B).$