Four persons can hit a target correctly with probabilities $\frac{1}{2},\frac{1}{3},\frac{1}{4}$ and $\frac {1}{8}$ respectively. If all hit at the target independently, then the probability that the target would be hit, is
$\frac{{25}}{{32}}$
$\frac{{25}}{{192}}$
$\frac{{7}}{{32}}$
$\frac{{1}}{{192}}$
A party of $23$ persons take their seats at a round table. The odds against two persons sitting together are
For three events $A,B $ and $C$ ,$P ($ Exactly one of $A$ or $B$ occurs$)\, =\, P ($ Exactly one of $C$ or $A$ occurs $) =$ $\frac{1}{4}$ and $P ($ All the three events occur simultaneously $) =$ $\frac{1}{16}$ Then the probability that at least one of the events occurs is :
In a city $20\%$ persons read English newspaper, $40\%$ read Hindi newspaper and $5\%$ read both newspapers. The percentage of non-reader either paper is
Two balls are drawn at random with replacement from a box containing $10$ black and $8$ red balls. Find the probability that One of them is black and other is red.
A coin is tossed twice. If events $A$ and $B$ are defined as :$A =$ head on first toss, $B = $ head on second toss. Then the probability of $A \cup B = $