Four persons can hit a target correctly with probabilities $\frac{1}{2},\frac{1}{3},\frac{1}{4}$ and $\frac {1}{8}$ respectively. If all hit at the target independently, then the probability that the target would be hit, is
$\frac{{25}}{{32}}$
$\frac{{25}}{{192}}$
$\frac{{7}}{{32}}$
$\frac{{1}}{{192}}$
Two dice are thrown independently. Let $A$ be the event that the number appeared on the $1^{\text {st }}$ die is less than the number appeared on the $2^{\text {nd }}$ die, $B$ be the event that the number appeared on the $1^{\text {st }}$ die is even and that on the second die is odd, and $C$ be the event that the number appeared on the $1^{\text {st }}$ die is odd and that on the $2^{\text {nd }}$ is even. Then
Probability of solving specific problem independently by $A$ and $B$ are $\frac{1}{2}$ and $\frac{1}{3}$ respectively. If both try to solve the problem independently, find the probability that exactly one of them problem
Let $A$ and $B$ be two events such that the probability that exactly one of them occurs is $\frac{2}{5}$ and the probability that $A$ or $B$ occurs is $\frac{1}{2}$ then the probability of both of them occur together is
If $A$ and $B$ are events such that $P(A \cup B) = 3/4,$ $P(A \cap B) = 1/4,$ $P(\bar A) = 2/3,$ then $P(\bar A \cap B)$ is
If $P\,(A) = \frac{1}{4},\,\,P\,(B) = \frac{5}{8}$ and $P\,(A \cup B) = \frac{3}{4},$ then $P\,(A \cap B) = $